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Abstract
In this paper, we investigate the theta vector and quantum theta function over
noncommutative T

4 from the embedding of R×Z
2. Manin has constructed the

quantum theta functions from the lattice embedding into vector space (× finite
group). We extend Manin’s construction of the quantum theta function to the
embedding of vector space × lattice case. We find that the holomorphic theta
vector exists only over the vector space part of the embedding, and over the
lattice part we can only impose the condition for the Schwartz function. The
quantum theta function built on this partial theta vector satisfies the requirement
of the quantum theta function. However, two subsequent quantum translations
from the embedding into the lattice part are nonadditive, contrary to the
additivity of those from the vector space part.

PACS numbers: 02.40.Gh, 11.25.Sq

1. Introduction

In the quantization of a classical theta function, we encounter two types of objects. One is
the theta vector introduced by Schwarz [1], which is a holomorphic element of a projective
module over a unitary quantum torus. The other is the quantum theta function introduced by
Manin [2–5], which is an element of the function ring of the quantum torus itself. This is a
natural outcome if one considers the process of quantization, in which commutative physical
observables become operators acting on the states. Classically one deals with one type of
objects, observables. After quantization one deals with two types of objects, operators and
states. That is what happens here. In the classical sense, a set of specific values of observables
constitutes a state. The (classical) theta function is just like a state function. On the other
hand, the quantum theta function and theta vector correspond to an operator and a state vector,
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respectively, in the quantum sense. Manin [4, 5] has defined the quantum theta function via
the Rieffel’s algebra-valued inner product [6] of a theta vector [7] from the embedding of the
type R

p(×F) for the quantum torus. Here, d = 2p is the dimension of the relevant quantum
torus and F is a finite group. In [6], it was shown that the general embedding for the quantum
torus is of the type R

p ×Z
q(×F), where d = 2p + q is the dimension of the relevant quantum

torus. Manin has constructed the quantum theta functions only for the embeddings of R
p type,

and those from the R
p × Z

q type have been left in question [5].
One needs to know the result of the Z

q type embedding in order to understand the full
symmetry of quantum tori including the Morita equivalence. In [8], the symmetry of the
quantum torus was investigated, restricted to the symmetry of the algebra and its module, not
related to the Morita equivalence. In this paper, we construct the quantum theta functions in a
more general R

p × Z
q type of embedding that Manin did not investigate. We first investigate

the existence of the theta vector in this setup, and find that the holomorphic theta vector does
not exist in the exact sense. It turns out that one can only construct partially holomorphic theta
vectors, which are holomorphic for the embedding into the vector space (Rp) part but not for
the lattice (Zq) part. We then investigate whether the quantum theta function satisfying the
Manin’s requirement can be constructed with this partially holomorphic theta vector. We find
that the answer is yes.

The organization of this paper is as follows. In section 2, we construct a module for the
quantum 4-torus with the embedding of R

p ×Z
q type. In section 3, we construct the quantum

theta function evaluating the scalar product of the above module, and check the Manin’s
requirement for the quantum theta function. In section 4, we conclude with the discussion.

2. Lattice embedding of the quantum torus

Here, we first review the embedding of the quantum torus [6] and an explicit construction of
the module with an embedding of the type R

p(×F) which was done for the 4-torus case in [9].
Then we construct the module with an embedding of the type R

p × Z
q(×F) for the quantum

4-torus.
Quantum torus T

d
θ is a deformed algebra of the algebra of smooth functions on the torus

T
d with the deformation parameter θ , which is a real d ×d antisymmetric matrix. This algebra

is generated by operators U1, . . . , Ud obeying the following relations:

UjUi = e2π iθij UiUj and U ∗
i Ui = UiU

∗
i = 1, i, j = 1, . . . , d.

The above relations define the representation of the involutive algebra

Ad
θ =

{∑
ai1···id U

i1
1 · · · Uid

d

∣∣∣∣ a = (ai1···id ) ∈ S(Zd)

}
,

where S(Zd) is the Schwartz space of sequences with rapid decay.
Every projective module over a smooth algebra Ad

θ can be represented by a direct sum of
modules of the form S(Rp ×Z

q ×F), the linear space of Schwartz functions on R
p ×Z

q ×F ,
where 2p +q = d and F is a finite Abelian group. The module action is specified by operators
on S(Rp × Z

q × F) and the commutation relation of these operators should be matched with
that of elements in Ad

θ .
Recall that there is the dual action of the torus group T

d on Ad
θ which gives a Lie group

homomorphism of T
d into the group of automorphisms of Ad

θ . Its infinitesimal form generates
a homomorphism of Lie algebra L of T

d into Lie algebra of derivations ofAd
θ . Note that the Lie

algebra L is Abelian and is isomorphic to R
d . Let δ : L → Der

(
Ad

θ

)
be the homomorphism.

For each X ∈ L, δ(X) := δX is a derivation i.e., for u, v ∈ Ad
θ ,

δX(uv) = δX(u)v + uδX(v). (1)
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Derivations corresponding to the generators {e1, . . . , ed} of L will be denoted by δ1, . . . , δd .
For the generators Ui’s of T

d
θ , it has the following property:

δi(Uj ) = 2π iδijUj . (2)

Let D be a lattice in G = M × M̂, where M = R
p × Z

q × F and M̂ is its dual. Let � be an
embedding map such that D is the image of Z

d under the map �. This determines a projective
module to be denoted by E [6]. If E is a projective Ad

θ -module, a connection ∇ on E is a linear
map from E to E ⊗ L∗ such that for all X ∈ L,

∇X(ξu) = (∇Xξ)u + ξδX(u), ξ ∈ E, u ∈ Ad
θ . (3)

It is easy to see that

[∇i , Uj ] = 2π iδijUj . (4)

In the Heisenberg representation the operators are defined by

U(m,ŝ)f (r) = e2π i〈r,ŝ〉f (r + m) (5)

for (m, ŝ) ∈ D, r ∈ M .

2.1. Embedding into vector space

We now review the explicit construction of a module over noncommutative T
4 with the

embedding of the type R
2(×F) [9].

For the real part, we choose our embedding map as

�inf =


θ1 + n1

m1
0 0 0

0 0 θ2 + n2
m2

0

0 1 0 0
0 0 0 1

 ≡ (xij ). (6)

Then using the previous expression for the Heisenberg representation,

(Vif )(s1, s2) = (Vei
f )(s1, s2) := exp(2π i(s1x3i + s2x4i ))f (s1 + x1i , s2 + x2i ), s1, s2 ∈ R,

we get

(V1f )(s1, s2) = f

(
s1 + θ1 +

n1

m1
, s2

)
,

(V2f )(s1, s2) = exp(2π is1)f (s1, s2),

(V3f )(s1, s2) = f

(
s1, s2 + θ2 +

n2

m2

)
,

(V4f )(s1, s2) = exp(2π is2)f (s1, s2).

For the finite part, let F = Zm1 × Zm2 , where Zmi
= Z/miZ (i = 1, 2) and consider the

space C
m1 ⊗ C

m2 as the space of functions on C(Zm1 × Zm2). For all mi ∈ Z and ni ∈ Z/miZ

such that mi and ni are relatively prime, we define the operators Wi on C(Zm1 × Zm2)

corresponding to our embedding map

�fin =


−1 0 0 0
0 0 −1 0
0 n1

m1
0 0

0 0 0 n2
m2

 (7)
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with ki ∈ Zmi
(i = 1, 2) as follows:

(W1f )(k1, k2) = f (k1 − 1, k2),

(W2f )(k1, k2) = exp

(
2π i

n1k1

m1

)
f (k1, k2),

(W3f )(k1, k2) = f (k1, k2 − 1),

(W4f )(k1, k2) = exp

(
2π i

n2k2

m2

)
f (k1, k2).

Now, we define operators Ui = Vi ⊗ Wi acting on the space E := S(R2) ⊗ C
m1 ⊗ C

m2 as

(U1f )(s1, s2, k1, k2) = f

(
s1 + θ1 +

n1

m1
, s2, k1 − 1, k2

)
,

(U2f )(s1, s2, k1, k2) = e2π i(s1+ n1k1
m1

)
f (s1, s2, k1, k2),

(U3f )(s1, s2, k1, k2) = f

(
s1, s2 + θ2 +

n2

m2
, k1, k2 − 1

)
,

(U4f )(s1, s2, k1, k2) = e2π i(s2+ n2k2
m2

)
f (s1, s2, k1, k2).

(8)

One can see that they satisfy

U2U1 = e2π iθ1U1U2 U4U3 = e2π iθ2U3U4 (9)

and otherwise UiUj = UjUi .

2.2. Embedding into the lattice

Here, we do a similar construction for the embedding of the type R
p×Z

q(×F). The embedding
of the finite part can be done in the exactly same manner as in the previous subsection. Thus
we will suppress the expression for the finite part for brevity, and only consider the infinite
part with the embedding of the type R

p ×Z
q with p = 1 and q = 2. Here, we embed D ⊂ R

4

into R × Z
2 × R

∗ × T
2, and we choose our embedding as follows:

�inf =



θ1 0 0 0
0 0 m11 m12

0 0 m21 m22

0 1 0 0
0 0 δ̂11 δ̂12

0 0 δ̂21 δ̂22


≡ (xij ), (10)

where θ1 ∈ R, and mnl ∈ Z, δ̂nl ∈ T for n, l = 1, 2, and i = 1, . . . , 6, j = 1, . . . , 4. Then,
the operators Uj acting on the space E := S(R ⊗ Z

2) can be defined as

(U1f )(s, n1, n2) = f (s + θ1, n1, n2),

(U2f )(s, n1, n2) = e2π isf (s, n1, n2),

(U3f )(s, n1, n2) = e2π i(δ̂11n1+δ̂21n2)+π i(m11 δ̂11+m21 δ̂21)f (s, n1 + m11, n2 + m21),

(U4f )(s, n1, n2) = e2π i(δ̂12n1+δ̂22n2)+π i(m12 δ̂12+m22 δ̂22)f (s, n1 + m12, n2 + m22),

(11)

where s ∈ R, nl ∈ Z for l = 1, 2. In the above definition of Ui operators, an extra phase term
is added to conform with Manin’s definition of the quantum theta function [5]. The above can
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be compactly written as

(Ujf )(s, n1, n2) = e2π i(sx4j +n1x5j +n2x6j )+π i(
∑3

k=1 xkj x(k+3)j )f (s + x1j , n1 + x2j , n2 + x3j ) (12)

for j = 1, . . . , 4.
The commutation relations among Ui’s are given by

U2U1 = e2π iθ12U1U2, U4U3 = e2π iθ34U3U4, (13)

where θ12 = θ1, θ34 = m11δ̂12 + m21δ̂22 − m12δ̂11 − m22δ̂21 and otherwise UiUj = UjUi .

3. Quantum thetas

In this section, we first define connections with complex structures for the two embedding
cases in the previous section and consider the theta vector in each case. Then, we define the
quantum theta function for each case following the Manin’s construction.

3.1. Theta vectors

In the previous section, connections on a projective Ad
θ -module satisfy condition (4) and it can

be written as

Uj∇iU
−1
j = ∇i − 2π iδij . (14)

With this condition in mind, now we construct the theta vector for each embedding case.

3.1.1. Embedding into vector space. For the embedding of the type R
2(×F), the above

relation is satisfied, if we set

(∇if )(s1, s2) = −2π iAi1s1f (s1, s2) − 2π iAi2s2f (s1, s2) + Ai3
∂f (s1, s2)

∂s1
+ Ai4

∂f (s1, s2)

∂s2
,

where Aik ∈ R are constants to be determined. If we denote the embedding map as �inf ≡ (xij )

and suppress the finite part, then Ui action can be compactly expressed as

(Uif )(s1, s2) = e2π i(s1x3i+s2x4i )f (s1 + x1i , s2 + x2i ). (15)

Condition (14) is satisfied if

x1ix3i + x2ix4i = 0 (16)

and

Aik = (
�−1

inf

)
ik
. (17)

Note that the above Ui action (15) would have an extra phase term in the Manin’s convention.
However, the extra term, x1ix3i + x2ix4i , has no contribution here due to condition (16).
Incorporating the effect of the finite part, we slightly change the expression for the embedding
map for the infinite part (6) as follows:

�inf =


θ1 0 0 0
0 0 θ2 0
0 1 0 0
0 0 0 1

 ≡ (xij ). (18)
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Then, conditions (16) and (17) give

(Aik) =


1
θ1

0 0 0

0 0 1 0
0 1

θ2
0 0

0 0 0 1

 .

Therefore the following operators specify a constant curvature connection of right T
4
θ -module:

∇1 = −2π is1

θ1
, ∇2 = ∂

∂s1
,

∇3 = −2π is2

θ2
, ∇4 = ∂

∂s2
.

(19)

The complexified connection space can be decomposed as a sum of a holomorphic part
and an antiholomorphic part. A complex structure on the module E can be introduced by
choosing the antiholomorphic subspace spanned by the following connection:

∇1 = λ11∇1 + λ12∇2 + λ13∇3 + λ14∇4, ∇2 = λ21∇1 + λ22∇2 + λ23∇3 + λ24∇4,

where λij ∈ C. Choosing an appropriate basis such that (λij ) becomes(
λ12 λ14

λ22 λ24

)−1 (
λ11 λ12 λ13 λ14

λ21 λ22 λ23 λ24

)
=

(
τ11 1 τ12 0
τ21 0 τ22 1

)
the (2 × 2) matrix

(
τ11 τ12
τ21 τ22

)
, τij ∈ C, represents the complex structure of T

4
θ -module.

Now we consider holomorphic vectors in T
4
θ -module. A vector f ∈ E is called

holomorphic [1] if it satisfies

∇ if = 0 for i = 1, 2. (20)

The above holomorphic condition for f ∈ E now takes the form(
2π iτ11

θ1
s1 +

2π iτ12

θ2
s2

)
f = ∂f

∂s1
,

(
2π iτ21

θ1
s1 +

2π iτ22

θ2
s2

)
f = ∂f

∂s2
. (21)

In order for the two equations in (21) to be consistent τij should satisfy

τ12

θ2
= τ21

θ1
. (22)

If Im 	 > 0, equation (21) has a solution, the so-called theta vector [1, 7] on noncommutative
T

4,

f (s1, s2) = exp[π iSt	S], (23)

where S = (
s1
s2

)
, si ∈ R, i = 1, 2 and

	 =
(

τ11
θ1

τ12
θ2

τ21
θ1

τ22
θ2

)
.
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3.1.2. Embedding into a lattice. For the embedding of the type R × Z
2 the relation (14) is

satisfied if we let

(∇if )(s, n1, n2) = −2π iBi1sf (s, n1, n2) − 2π iBi2n1f (s, n1, n2)

− 2π iBi3n2f (s, n1, n2) + Bi4
∂f (s, n1, n2)

∂s
, for i = 1, . . . , 4, (24)

where Bik ∈ R are constants satisfying the following condition:

Bi1x1j + Bi2x2j + Bi3x3j + Bi4x4j = δij , i, j = 1, . . . , 4, (25)

while xij ’s in (10) should satisfy the following condition:

x1j x4j + x2j x5j + x3j x6j = 0, j = 1, . . . , 4. (26)

The embedding map (10) satisfies condition (26), and condition (25) gives

(Bik) =


1
θ1

0 0 0

0 0 0 1
0 b11 b12 0
0 b21 b22 0

 ,

where (
b11 b12

b21 b22

)
=

(
m11 m12

m21 m22

)−1

. (27)

Therefore the following operators specify a constant curvature connection of right
T

4
θ -module E:

∇1 = −2π is

θ1
, ∇2 = ∂

∂s
,

∇3 = −2π i(b11n1 + b12n2), ∇4 = −2π i(b21n1 + b22n2).

(28)

A complex structure on the module E might be introduced in the same manner as in the
previous case:

∇1 = λ11∇1 + λ12∇2 + λ13∇3 + λ14∇4, ∇2 = λ21∇1 + λ22∇2 + λ23∇3 + λ24∇4,

where λij ∈ C. And choosing an appropriate basis (λij ) can be expressed as(
λ13 λ14

λ23 λ24

)−1 (
λ11 λ12 λ13 λ14

λ21 λ22 λ23 λ24

)
=

(
τ11 τ12 1 0
τ21 τ22 0 1

)
,

with the (2 × 2) matrix
(
τ11 τ12
τ21 τ22

)
, τij ∈ C representing the complex structure of T

4
θ -module.

To be a holomorphic vector in T
4
θ -module, f ∈ E now takes the form(

2π iτ11

θ1
s + 2π i(b11n1 + b12n2)

)
f = τ12

∂f

∂s
,(

2π iτ21

θ1
s + 2π i(b21n1 + b22n2)

)
f = τ22

∂f

∂s
.

(29)

In order for the two equations in (29) to be consistent, τij , bij should satisfy

τ11

τ12
= τ21

τ22
, b12 = τ12

τ22
b22, b21 = τ22

τ12
b11.
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However, the above result yields

det

(
b11 b12

b21 b22

)
= 0,

which is contradictory to the assumption that (bij ) is the inverse matrix of (mij ), the relation
(27).

The above shows that one cannot have a holomorphic vector over totally complexified T
4
θ

in the embedding of R×Z
2. This can be remedied by giving a complex structure only over the

continuous part of the embedding space, i.e., by giving a complex structure to the connection
components over R × R

∗. Now, we implement this as follows:

∇1 = τ∇1 + ∇2, ∇2 = ∇3, ∇3 = ∇4, (30)

where τ ∈ C is a complex structure constant over R × R
∗. Then, the holomorphic vectors

over this complex structure satisfy

∇1f (s, n1, n2) = 0, (31)

which is

−2π iτ

θ1
sf +

∂f

∂s
= 0.

Since f belongs to S(R) ⊗ S(Z2), f (s, n1, n2) satisfying (31) can be given by

f (s, n1, n2) = exp

(
π iτ

θ1
s2

)
g(n1, n2), (32)

where g(n1, n2) ∈ S(Z2) is a Schwartz function. For the function g(n1, n2), we will use a
simple Schwartz function such that f (s, n1, n2) can be expressed as

f (s, n1, n2) = exp

[
π i

τ

θ1
s2 − π

1

θ2
(n2

1 + n2
2)

]
, (33)

where Im τ > 0, and θ1 = θ12 > 0, θ2 = θ34 > 0 are given in (13).

3.2. Quantum theta functions

Before considering the quantum theta function, we first review the algebra-valued inner product
on a bimodule after Rieffel [6]. Let M be any locally compact Abelian group, and M̂ be its
dual group, and let G ≡ M × M̂ . Let π be a representation of G on L2(M) such that

πxπy = α(x, y)πx+y = α(x, y)α(y, x)πyπx for x, y ∈ G, (34)

where α is a map α : G × G → C
∗ satisfying

α(x, y) = α(y, x)−1, α(x1 + x2, y) = α(x1, y)α(x2, y),

and α denotes the complex conjugation of α. Let D be a discrete subgroup of G. We
define S(D) as the space of Schwartz functions on D. For � ∈ S(D), it can be expressed as
� = ∑

w∈D �(w)eD,α(w) where eD,α(w) is a delta function with support at w and obeys the
following relation:

eD,α(w1)eD,α(w2) = α(w1, w2)eD,α(w1 + w2). (35)

For the Schwartz functions f, g ∈ S(M), the algebra (S(D))-valued inner product is
defined as

D〈f, g〉 ≡
∑
w∈D

D〈f, g〉(w)eD,α(w), (36)
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where

D〈f, g〉(w) = 〈f, πwg〉.
Here, the scalar product of the type 〈f, p〉 above with f, p ∈ L2(M) denotes the following:

〈f, p〉 =
∫

f (x1)p(x1) dµx1 for x = (x1, x2) ∈ M × M̂, (37)

where µx1 represents the Haar measure on M and p(x1) denotes the complex conjugation of
p(x1). The S(D)-valued inner product can be represented as

D〈f, g〉 =
∑
w∈D

〈f, πwg〉eD,α(w). (38)

For � ∈ S(D) and f ∈ S(M), then π(�)f ∈ S(M) can be written as [6]

(π(�)f )(m) =
∑
w∈D

�(w)(πwf )(m), (39)

where m ∈ M,w ∈ D ⊂ M × M̂ .

3.2.1. Embedding into vector space. Now, we consider Manin’s quantum theta function �D

[3–5] for the embedding into vector space. In [5], the quantum theta function was defined via
algebra-valued inner product up to a constant factor [11],

D〈f, f 〉 ∼ �D, (40)

where f used in Manin’s construction [5] was a simple Gaussian theta vector

f = eπ ixt
1T x1 , x1 ∈ M. (41)

Here T is a complex structure given by a complex skew symmetric matrix. With a given
complex structure T, a complex variable x ∈ C

n can be introduced via

x ≡ T x1 + x2, (42)

where x = (x1, x2) ∈ M × M̂ .
Based on the defining concept for the quantum theta function (40), one can define the

quantum theta function �D in the noncommutative T
4 case as

D〈f, f 〉 = 1√
22 det(Im T )

�D, (43)

for f given by (41) and T given by 	 that appeared in (23). According to (36), the S(D)-valued
inner product (43) can be written as

D〈f, f 〉 =
∑
h∈D

〈f, πhf 〉eD,α(h). (44)

In [5], Manin showed that the quantum theta function defined in (43) is given by

�D =
∑
h∈D

e− π
2 H(h,h)eD,α(h), (45)

where

H(g, h) ≡ gt (Im T )−1h∗

with h∗ = T h1 + h2 denoting the complex conjugate of h. At the same time, it also satisfies a
quantum version of the translation action for the classical theta functions [3]:

∀g ∈ D, CgeD,α(g)x∗
g (�D) = �D, (46)
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where Cg is defined by

Cg = e− π
2 H(g,g)

and the action of x∗
g , ‘quantum translation’, is given by

x∗
g (eD,α(h)) = e−πH(g,h)eD,α(h). (47)

In [3], Manin has also required that the factor Cg, g ∈ D appearing in the quantum translation
x∗

g has to satisfy the following relation under a combination of quantum translations for
consistency:

Cg+h

CgCh

= Tg(h)α(g, h). (48)

Here α(g, h) is the cocycle appearing in (35) and Tg(h) is a generalized expression of the
factor that appears by quantum translation,

x∗
g (eD,α(h)) ≡ Tg(h)eD,α(h). (49)

The proof of the functional relation (46) in this embedding case with quantum translation (47)
is shown in [5], in which the complex structure T is given by 	 in (23).

3.2.2. Embedding into lattice. We now turn to the second embedding case of nonzero q, where
we do not have holomorphic vectors, the so-called theta vectors, once we assign a complex
structure over the whole T

4. A way-out from this difficulty turned out to be introducing a
complex structure partially, i.e., only over the continuous subspace of the embedding space.
As a result of this we got the function f (s, n1, n2) (33) as an element of the module relevant
to the nonzero q embedding.

With the function f (s, n1, n2), we now evaluate the quantum theta function, and see
whether it satisfies the functional relation for ‘quantum translation’. We first define the
quantum theta function à la (43) for T

4 in the q = 2 case:

1√
2 Im T

�̂D = D〈f, f 〉, (50)

where T is a ‘complex structure’ over the continuous part of the embedding space to be
specified below. We then show that the above-defined quantum theta function satisfies a
functional relation à la (46) with modified quantum translation,

∀g ∈ D, ĈgeD,α(g)x̂∗
g (�̂D) = �̂D, (51)

where Ĉg, x̂
∗
g are to be defined below.

To evaluate the quantum theta function (50), we calculate the scalar product inside the
summation in (44) first. For that we first write the action of the operator πh on f :

πhf (s, n1, n2) = e2π i(wh2s+t1n1+t2n2)+π i(wh1wh2+m1t1+m2t2)f (s + wh1, n1 + m1, n2 + m2), (52)

where h ∈ D is given by

h = (wh1, wh2,m1,m2, t1, t2) ∈ R × R
∗ × Z × Z × T × T.

Then,

〈f, πhf 〉 =
∑

n1,n2∈Z

∫
R

ds eπ[i τ
θ1

s2− 1
θ2

(n2
1+n2

2)] e−2π i(wh2s+t1n1+t2n2)−π i(wh1wh2+m1t1+m2t2)

× eπ[−i τ̄
θ1

(s+wh1)
2− 1

θ2
[(n1+m1)

2+(n2+m2)
2]]
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=
∫

R

ds e−2π[ Im τ
θ1

s2+i τ̄
θ1

wh1s+iwh2s]−iπ[ τ̄
θ1

(wh1)
2+wh1wh2]

× e− π
θ2

(m2
1+m2

2)−π i(m1t1+m2t2)
∑

n1,n2∈Z

e− 2π
θ2

(n2
1+n2

2)+2π i[n1(−t1+ im1
θ2

)+n2(−t2+ im2
θ2

)]

= bt1,m1bt2,m2

∫
R

ds e−2π[ Im τ
θ1

s2+i τ̄
θ1

wh1s+iwh2s]−iπ[ τ̄
θ1

(wh1)
2+wh1wh2]

, (53)

where

btj ,mj
= e− π

θ2
m2

j −π imj tj θ

(
τ = 2i

θ2
, z = −tj +

imj

θ2

)
, j = 1, 2. (54)

Here, θ(τ, z) is the classical theta function defined by

θ(τ, z) =
∑
n∈Z

eπ iτn2+2π inz, for τ, z ∈ C.

In order to facilitate the integration part, we denote the integrand as

e−π[q(s)+lwh
(s)+C̃wh

]

with

q(s) = 2(Im T )s2, lwh
(s) = 2i(T ∗wh1 + wh2)s, C̃wh

= iwh1(T
∗wh1 + wh2),

where

T = τ

θ1
.

Using the relation

q(s + λwh
) − q(λwh

) = q(s) + lwh
(s)

with

λwh
≡ i

2
(Im T )−1wh

∗,

the integration becomes∫
R

ds e−π(q(s)+lwh
(s)+C̃wh

) = e−π(C̃wh
−q(λwh

))

∫
R

ds e−πq(s+λwh
) = 1√

2 Im T
e−π(C̃wh

−q(λwh
)).

With a straightforward calculation one can check that

C̃wh
− q(λwh

) = 1
2H(wh,wh).

Thus the quantum theta function �̂D is given by

�̂D =
∑
h∈D

b̃h e− π
2 H(wh,wh)eD,α(h), (55)

where

b̃h =
2∏

j=1

btj ,mj
(56)

with btj ,mj
given in (54).
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To be consistently maintaining the symmetry property of the classical theta function under
lattice translation, the above given quantum theta function should satisfy the functional relation
under ‘quantum translation’ (51),

∀g ∈ D, ĈgeD,α(g)x̂∗
g (�̂D) = �̂D,

and the consistency condition (48) for Ĉg . The above relation is satisfied if we assign

Ĉg = b̃g e− π
2 H(wg,wg), (57)

and x̂∗
g is defined by

x̂∗
g (eD,α(h)) = T̂g(h)eD,α(h) (58)

with

T̂g(h) = Ĉg+h

ĈgĈhα(g, h)
. (59)

Here we note that the quantum translations are not additive in this case:

x̂∗
g1

· x̂∗
g2

(eD,α(h)) = x̂∗
g1+g2

(eD,α(h)). (60)

On the other hand, the quantum translations in the Manin’s case (x∗
g ), (47), are additive:

x∗
g1

· x∗
g2

(eD,α(h)) = x∗
g1+g2

(eD,α(h)). (61)

Now, it is easy to show the relation (51):

ĈgeD,α(g)x̂∗
g (�̂D) = ĈgeD,α(g)x̂∗

g

(∑
h∈D

b̃h e− π
2 H(wh,wh)eD,α(h)

)

= ĈgeD,α(g)x̂∗
g

(∑
h∈D

ĈheD,α(h)

)

=
∑
h∈D

ĈgĈheD,α(g)T̂g(h)eD,α(h)

=
∑
h∈D

Ĉg+heD,α(g + h) = �̂D,

where we used the relation (57) in the second step and the relation (59) together with the
cocycle condition (35) in the last step.

4. Conclusion

In this paper, we study the theta vector and the corresponding quantum theta function in the
embedding into the lattice for the noncommutative 4-torus.

While the theta vector exists in the embedding into the vector space case (Rp type), it
does not exist in the embedding into the lattice case (Zq type). And thus holomorphic theta
vectors only exist for the vector space part in the case of mixed embedding (Rp × Z

q type).
In general, the modules from embeddings including the lattice part are not fully holomorphic.
Manin constructed the quantum theta functions only with holomorphic modules. Therefore, it
is natural to ask whether one can construct the quantum theta function satisfying the Manin’s
requirement with the partially holomorphic modules in the mixed embedding case.

It turns out that these non-holomorphic modules also satisfy the requirement of the
quantum theta function of Manin. We show this explicitly for the noncommutative 4-torus
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case with embedding into R × Z
2. However, we note a feature that is different among the

two quantum theta functions. In our quantum theta function constructed with a partially
holomorphic module, two consecutive ‘quantum translations’ are not additive, while those in
the Manin’s are additive. This happens due to the consistency condition between quantum
translation and the cocycle condition (48). The same holds for the quantum theta functions
constructed with modules from embeddings into lattice (Zq) part only. This is due to the
structure of the quantum theta function shown in (55) and that of the coefficient of the
quantum translation, (57). Both of them consist of a direct product of the contributions from
the two parts, one from the embedding into vector space and the other from the embedding
into lattice.

In conclusion, we show explicitly that the quantum theta function that Manin defined
can be constructed with any choice of the following embeddings, (1) into vector space times
lattice, (2) into vector space, (3) into lattice, for the noncommutative 4-torus. We expect that
this will hold for higher dimensional noncommutative tori.
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